Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Immunol Lett ; 254: 30-38, 2023 02.
Article in English | MEDLINE | ID: covidwho-2179680

ABSTRACT

BACKGROUND: Immunothrombosis, a process of inflammation and coagulation, is involved in sepsis-induced acute respiratory distress syndrome formation (ARDS). However, the clinical correlation between immunothrombosis biomarkers (including tissue factor [TF] and von Willebrand factor [vWF]) and coronavirus disease 2019 (COVID-19)-related ARDS is unknown. This study investigated ARDS development following moderate-to-critical COVID-19 and examined immunothrombosis biomarkers as ARDS predictors. METHODS: This retrospective cohort study included patients with moderate-to-critical COVID-19 (n = 165) admitted to a northern teaching hospital during the 2021 pandemic in Taiwan, who had no COVID-19 vaccinations. Immunothrombosis biomarkers were compared between COVID-19 patients with and without ARDS (no-ARDS) and a control group consisting of 100 healthy individuals. RESULTS: The study included 58 ARDS and 107 no-ARDS patients. In multivariable analysis, TF (aOR=1.031, 95% CI: 1.009-1.053, p = 0.006); and vWF (aOR=1.053, 95% CI: 1.002-1.105, p = 0.041) were significantly associated with ARDS episodes, after adjusting for other confounding factors. vWF and TF predicted ARDS with the area under the curve of 0.870 (95% CI: 0.796-0.945). Further mechanical ventilation analysis found TF to be correlated significantly with pCO2 and ventilatory ratio. CONCLUSIONS: TF and vWF levels potentially predicted ARDS development within 7 days of admission for COVID-19 after adjusting for traditional risk factors. TF correlated with ventilation impairment in COVID-19 ARDS but further prospective studies are needed.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , Humans , Retrospective Studies , von Willebrand Factor/analysis , Thromboinflammation , COVID-19/complications , Biomarkers
2.
Eur J Med Res ; 27(1): 275, 2022 Dec 04.
Article in English | MEDLINE | ID: covidwho-2153678

ABSTRACT

BACKGROUND: Heme oxygenase one (HO-1) is considered a poor prognostic factor for survival in patients with severe-to-critical coronavirus disease (COVID-19), but the clinical correlation between heme catabolism biomarkers and COVID-19-related sepsis is unknown. The etiopathogenetic hypothesis of HO-1 response during sepsis in patients with poor prognosis should be clarified. This study aimed to investigate sepsis development within 48 h following moderate-to-critical COVID-19 and examined heme/HO-1 catabolism biomarkers associated with sepsis. We also studied the HO-1 and traditional prognostic factors for predicting survival in patients with COVID-19. METHODS: This retrospective observational study included patients unvaccinated for COVID-19 with moderate-to-critical COVID-19 (n = 156) who had been admitted to Taipei Tzu Chi Hospital in 2021. All COVID-19 patients were diagnosed by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) reverse transcriptase polymerase chain reaction. For analysis of heme catabolism in SARS-CoV-2-induced sepsis, we excluded patients with co-infection and severe anemia. Heme catabolism biomarkers were compared between groups of patients with COVID-19 and sepsis (sepsis) and those with COVID-19 without sepsis (no sepsis), and a control group comprising 100 healthy individuals. All clinical and laboratory data were collected retrospectively and blood specimens were collected from Biobank. Multivariable logistic regression analysis was used to compare all variables between the sepsis and no-sepsis groups. Cox regression analysis was used to determine predictors of survival in patients with COVID-19. RESULTS: There were 71 and 85 patients with and without sepsis, respectively. Heme and HO-1 levels differed significantly between the sepsis, no sepsis, and control groups. In multivariate analysis, confusion, blood urea nitrogen, respiration, blood pressure in patients aged > 65 years (CURB-65) (adjusted odds ratio [aOR] 5.331, 95% confidence interval [CI] 2.587-10.987; p < 0.001), albumin (aOR 0.139, 95% CI 0.003-0.636; p = 0.01), D-dimer (aOR 1.001, 95% CI 1.000-1.002; p = 0.032), and HO-1 (aOR 1.116, 95% CI 1.055-1.180; p < 0.001) were significantly associated with 48-h sepsis episodes after adjusting for other confounding factors. HO-1 levels were also significantly associated with 48-h Sequential Organ Failure Assessment Score (SOFA) scores. However, HO-1 did not significantly increase the hazard of in-hospital mortality in moderate-to-critical COVID-19 by Cox regression analysis. CONCLUSIONS: HO-1 levels increased with sepsis development within 48 h of admission for COVID-19 after adjusting for other risk factors, but no significant association was observed between HO-1 and COVID-19 mortality. We suppose that HO-1 may have protective effect in early sepsis, but further clinical multicenter prospective studies are needed.


Subject(s)
COVID-19 , Sepsis , Humans , Heme Oxygenase (Decyclizing) , Retrospective Studies , SARS-CoV-2 , Sepsis/complications , Heme
3.
Emerg Infect Dis ; 28(10): 2126-2130, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-2022577

ABSTRACT

Among previously uninfected healthcare workers in Taiwan, mRNA COVID-19 booster vaccine was associated with lower odds of COVID-19 after primary recombinant vaccine. Symptom-triggered testing revealed that tetravalent influenza vaccine was associated with higher odds of SARS-CoV-2 infection. COVID-19 vaccination continues to be most effective against SARS-CoV-2.


Subject(s)
COVID-19 , Influenza Vaccines , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , Health Personnel , Humans , RNA, Messenger , SARS-CoV-2 , Taiwan/epidemiology
4.
Front Nutr ; 9: 837458, 2022.
Article in English | MEDLINE | ID: covidwho-1847196

ABSTRACT

The first wave of the coronavirus disease 2019 (COVID-19) outbreak in Taiwan occurred in May 2021. The risk for and severity of this disease vary and are highly dependent on personal habits and comorbidities. Moreover, the gut microbiome, which may be affected by diet, is highly susceptible with regard to the risk and severity of infectious diseases such as COVID-19. The relationship between dietary habits, nutritional status, and the effects of these factors on the immune system in the context of a global pandemic is an extremely important topic of immediate concern. Hence, the aim of this study was to explore the effect of vegetarian and non-vegetarian diets on COVID-19 severity during the pandemic. We conducted a retrospective evaluation of 509 patients who had been diagnosed with COVID-19 at a single medical center between May 2021 and August 2021. Patients were divided into three groups according to disease severity. For patients aged ≥65 years, COVID-19 symptom severity was statistically significantly and inversely associated with the adherence to a vegetarian diet (p = 0.013). Moreover, subgroup analysis results showed that older COVID-19 patients and those with a non-vegetarian diet had a higher risk of contracting critically severe COVID-19 [adjusted odds ratio (OR) = 5.434, p = 0.005]. Further research is needed to determine the effects of dietary habits on COVID-19 risk and severity during the global pandemic.

5.
Front Nutr ; 9: 832321, 2022.
Article in English | MEDLINE | ID: covidwho-1775726

ABSTRACT

Background: Since late 2019, there has been a global COVID-19 pandemic. To preserve medical capacity and decrease adverse health effects, preventing the progression of COVID-19 to severe status is essential. Jing-Si Herbal Tea (JSHT), a novel traditional Chinese medicine formula was developed to treat COVID-19. This study examined the clinical efficacy and safety of JSHT in patients with mild-to-moderate COVID-19. Methods: In this prospective cohort study, we enrolled 260 patients with mild-to-moderate COVID-19. The enrolled patients were divided into the JSHT (n = 117) and control (n = 143) groups. Both groups received standard management. The JSHT group was treated with JSHT as a complementary therapy. Results: Compared with standard management alone, JSHT combined with standard management more effectively improved the reverse transcription-polymerase chain reaction cycle threshold value, C-reactive protein level, and Brixia score in the adult patients with mild-to-moderate COVID-19, especially in the male and older patients (those aged ≥60 years). The results revealed that the patients treated with JSHT combined with standard management had 51, 70, and 100% lower risks of intubation, Medisave Care Unit admission, and mortality compared with those receiving standard management only. Conclusions: JSHT combined with standard management more effectively reduced the SARS-CoV-2 viral load and systemic inflammation and alleviated lung infiltrates in the patients with mild-to-moderate COVID-19, especially in the male and older patients (those aged ≥60 years). JSHT combined with standard management may prevent critical status and mortality in patients with mild-to-moderate COVID-19. JSHT is a promising complementary therapy for patients with mild-to-moderate COVID-19.

6.
J Microbiol Immunol Infect ; 55(1): 166-169, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1700704

ABSTRACT

This was a preliminary study on ultraviolet C (UVC) irradiation for SARS-CoV-2-contaminated hospital environments. Forty-eight locations were tested for SARS-CoV-2 using RT-PCR (33.3% contamination rate). After series dosages of 222-nm UVC irradiation, samples from the surfaces were negative at 15 s irradiation at 2 cm length (fluence: 81 mJ/cm2).


Subject(s)
COVID-19 , SARS-CoV-2 , Disinfection , Humans , Ultraviolet Rays , Virus Inactivation/radiation effects
7.
Viruses ; 13(12)2021 11 26.
Article in English | MEDLINE | ID: covidwho-1542797

ABSTRACT

To overcome the ongoing coronavirus disease 2019 (COVID-19) pandemic, transmission routes, such as healthcare worker infection, must be effectively prevented. Ultraviolet C (UVC) (254 nm) has recently been demonstrated to prevent environmental contamination by infected patients; however, studies on its application in contaminated hospital settings are limited. Herein, we explored the clinical application of UVC and determined its optimal dose. Environmental samples (n = 267) collected in 2021 were analyzed by a reverse transcription-polymerase chain reaction and subjected to UVC irradiation for different durations (minutes). We found that washbasins had a high contamination rate (45.5%). SARS-CoV-2 was inactivated after 15 min (estimated dose: 126 mJ/cm2) of UVC irradiation, and the contamination decreased from 41.7% before irradiation to 16.7%, 8.3%, and 0% after 5, 10, and 15 min of irradiation, respectively (p = 0.005). However, SARS-CoV-2 was still detected in washbasins after irradiation for 20 min but not after 30 min (252 mJ/cm2). Thus, 15 min of 254-nm UVC irradiation was effective in cleaning plastic, steel, and wood surfaces in the isolation ward. For silicon items, such as washbasins, 30 min was suggested; however, further studies using hospital environmental samples are needed to confirm the effective UVC inactivation of SARS-CoV-2.


Subject(s)
COVID-19/prevention & control , Infection Control/methods , SARS-CoV-2/radiation effects , Ultraviolet Rays , COVID-19/virology , Dose-Response Relationship, Radiation , Hospitals , Humans , SARS-CoV-2/isolation & purification , Time Factors
8.
J Infect Public Health ; 14(11): 1708-1714, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1446873

ABSTRACT

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) attacks pulmonary alveolar cells via angiotensin-converting enzyme 2 (ACE2) receptors and causes pulmonary infections that result in coronavirus disease (COVID-19), inducing immune responses that can result in severe pneumonia. We reviewed the clinical experiences of lung diseases during the COVID-19 pandemic to offer insights into the adaptations made by experts in the diagnosis and treatment of these comorbidities. Various lung comorbidities increase the severity of COVID-19 and associated mortality by amplifying ACE2 expression. Additionally, the COVID-19 pandemic has changed the use of routine diagnostic pulmonary imaging methods, making chest sonography scoring the most convenient, as it can be conducted bedside. Treatment protocols for SARS-CoV-2 infection and the underlying lung diseases are also affected owing to potential interactions. The optimal diagnostic methods and treatment protocols for lung diseases have been adapted worldwide to increase survival rates and attenuate acute lung injuries during the COVID-19 pandemic.


Subject(s)
COVID-19 , Pneumonia , Humans , Lung/diagnostic imaging , Pandemics , SARS-CoV-2
9.
Int J Mol Sci ; 22(16)2021 Aug 20.
Article in English | MEDLINE | ID: covidwho-1367848

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 is a new, highly pathogenic virus that has recently elicited a global pandemic called the 2019 coronavirus disease (COVID-19). COVID-19 is characterized by significant immune dysfunction, which is caused by strong but unregulated innate immunity with depressed adaptive immunity. Reduced and delayed responses to interferons (IFN-I/IFN-III) can increase the synthesis of proinflammatory cytokines and extensive immune cell infiltration into the airways, leading to pulmonary disease. The development of effective treatments for severe COVID-19 patients relies on our knowledge of the pathophysiological components of this imbalanced innate immune response. Strategies to address innate response factors will be essential. Significant efforts are currently underway to develop vaccines against SARS-CoV-2. COVID-19 vaccines, such as inactivated DNA, mRNA, and protein subunit vaccines, have already been applied in clinical use. Various vaccines display different levels of effectiveness, and it is important to continue to optimize and update their composition in order to increase their effectiveness. However, due to the continuous emergence of variant viruses, improving the immunity of the general public may also increase the effectiveness of the vaccines. Many observational studies have demonstrated that serum levels of vitamin D are inversely correlated with the incidence or severity of COVID-19. Extensive evidence has shown that vitamin D supplementation could be vital in mitigating the progression of COVID-19 to reduce its severity. Vitamin D defends against SARS-CoV-2 through a complex mechanism through interactions between the modulation of innate and adaptive immune reactions, ACE2 expression, and inhibition of the renin-angiotensin system (RAS). However, it remains unclear whether Vit-D also plays an important role in the effectiveness of different COVID-19 vaccines. Based on analysis of the molecular mechanism involved, we speculated that vit-D, via various immune signaling pathways, plays a complementary role in the development of vaccine efficacy.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , Vitamin D/administration & dosage , Vitamin D/blood , Animals , COVID-19/blood , COVID-19/immunology , COVID-19 Vaccines/immunology , Clinical Trials as Topic , Humans , Immunogenicity, Vaccine , Pandemics/prevention & control , Randomized Controlled Trials as Topic , SARS-CoV-2/isolation & purification , Vitamin D/immunology
10.
Int J Mol Sci ; 22(10)2021 May 16.
Article in English | MEDLINE | ID: covidwho-1234743

ABSTRACT

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is still an ongoing global health crisis. Immediately after the inhalation of SARS-CoV-2 viral particles, alveolar type II epithelial cells harbor and initiate local innate immunity. These particles can infect circulating macrophages, which then present the coronavirus antigens to T cells. Subsequently, the activation and differentiation of various types of T cells, as well as uncontrollable cytokine release (also known as cytokine storms), result in tissue destruction and amplification of the immune response. Vitamin D enhances the innate immunity required for combating COVID-19 by activating toll-like receptor 2. It also enhances antimicrobial peptide synthesis, such as through the promotion of the expression and secretion of cathelicidin and ß-defensin; promotes autophagy through autophagosome formation; and increases the synthesis of lysosomal degradation enzymes within macrophages. Regarding adaptive immunity, vitamin D enhances CD4+ T cells, suppresses T helper 17 cells, and promotes the production of virus-specific antibodies by activating T cell-dependent B cells. Moreover, vitamin D attenuates the release of pro-inflammatory cytokines by CD4+ T cells through nuclear factor κB signaling, thereby inhibiting the development of a cytokine storm. SARS-CoV-2 enters cells after its spike proteins are bound to angiotensin-converting enzyme 2 (ACE2) receptors. Vitamin D increases the bioavailability and expression of ACE2, which may be responsible for trapping and inactivating the virus. Activation of the renin-angiotensin-aldosterone system (RAS) is responsible for tissue destruction, inflammation, and organ failure related to SARS-CoV-2. Vitamin D inhibits renin expression and serves as a negative RAS regulator. In conclusion, vitamin D defends the body against SARS-CoV-2 through a novel complex mechanism that operates through interactions between the activation of both innate and adaptive immunity, ACE2 expression, and inhibition of the RAS system. Multiple observation studies have shown that serum concentrations of 25 hydroxyvitamin D are inversely correlated with the incidence or severity of COVID-19. The evidence gathered thus far, generally meets Hill's causality criteria in a biological system, although experimental verification is not sufficient. We speculated that adequate vitamin D supplementation may be essential for mitigating the progression and severity of COVID-19. Future studies are warranted to determine the dosage and effectiveness of vitamin D supplementation among different populations of individuals with COVID-19.


Subject(s)
Adaptive Immunity , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/immunology , Immunity, Innate , SARS-CoV-2/immunology , Vitamin D/metabolism , Vitamin D/pharmacology , COVID-19/mortality , COVID-19/physiopathology , COVID-19/virology , Cytokine Release Syndrome/complications , Cytokines/metabolism , Humans , Receptors, Virus/metabolism , Renin-Angiotensin System/physiology
11.
J Clin Med ; 9(12)2020 Dec 07.
Article in English | MEDLINE | ID: covidwho-967778

ABSTRACT

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has rapidly evolved into a global pandemic. The hyperglycemia in patients with diabetes mellitus (DM) substantially compromises their innate immune system. SARS-CoV-2 uses human angiotensin-converting enzyme 2 (ACE2) receptors to enter the affected cell. Uncontrolled hyperglycemia-induced glycosylation of ACE2 and the S protein of SARS-CoV-2 could facilitate the binding of S protein to ACE2, enabling viral entry. Downregulation of ACE2 activity secondary to SARS-CoV-2 infection, with consequent accumulation of angiotensin II and metabolites, eventually leads to poor outcomes. The altered binding of ACE2 with SARS-CoV-2 and the compromised innate immunity of patients with DM increase their susceptibility to COVID-19; COVID-19 induces pancreatic ß-cell injury and poor glycemic control, which further compromises the immune response and aggravates hyperglycemia and COVID-19 progression, forming a vicious cycle. Sequential cleavage of viral S protein by furin and transmembrane serine protease 2 (TMPRSS2) triggers viral entry to release the viral genome into the target cell. Hence, TMPRSS2 and furin are possible drug targets. As type 1 DM exhibits a Th1-driven autoimmune process, the relatively lower mortality of COVID-19 in type 1 DM compared to type 2 DM might be attributed to an imbalance between Th1 and Th2 immunity. The anti-inflammatory effects of dipeptidyl peptidase-4 inhibitor may benefit patients with DM and COVID-19. The potential protective effects of sodium-glucose cotransporter-2 inhibitor (SGLT2i), including reduction in lactate level, prevention of lowering of cytosolic pH and reduction in pro-inflammatory cytokine levels may justify the provision of SGLT2i to patients with DM and mild or asymptomatic COVID-19. For patients with DM and COVID-19 who require hospitalization, insulin-based treatment is recommended with cessation of metformin and SGLT2i. Further evidence from randomized or case-control clinical trials is necessary to elucidate the effectiveness and pitfalls of different types of medication for DM.

12.
Int J Med Sci ; 18(2): 314-324, 2021.
Article in English | MEDLINE | ID: covidwho-961815

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic is the largest health crisis ever faced worldwide. It has resulted in great health and economic costs because no effective treatment is currently available. Since infected persons vary in presentation from healthy asymptomatic mild symptoms to those who need intensive care support and eventually succumb to the disease, this illness is considered to depend primarily on individual immunity. Demographic distribution and disease severity in several regions of the world vary; therefore, it is believed that natural inherent immunity provided through dietary sources and traditional medicines could play an important role in infection prevention and disease progression. People can boost their immunity to prevent them from infection after COVID-19 exposure and can reduce their inflammatory reactions to protect their organ deterioration in case suffering from the disease. Some drugs with in-situ immunomodulatory and anti-inflammatory activity are also identified as adjunctive therapy in the COVID-19 era. This review discusses the importance of COVID-19 interactions with immune cells and inflammatory cells; and further emphasizes the possible pathways related with traditional herbs, medications and nutritional products. We believe that such pathophysiological pathway approach treatment is rational and important for future development of new therapeutic agents for prevention or cure of COVID-19 infection.


Subject(s)
COVID-19 Drug Treatment , Host-Pathogen Interactions , Medicine, Traditional , COVID-19/prevention & control , COVID-19/virology , Drug Therapy, Combination , Humans , Immunomodulation , Molecular Targeted Therapy , Phytotherapy , Plant Extracts/therapeutic use , SARS-CoV-2/physiology , Vitamins/therapeutic use , Zinc/therapeutic use
13.
J Microbiol Immunol Infect ; 54(1): 113-116, 2021 Feb.
Article in English | MEDLINE | ID: covidwho-866905

ABSTRACT

Increased heme levels, anemia, and desaturation occur during infection. We aimed to compare the levels of heme, heme oxygenase-1 (HO-1), ferritin, and bilirubin in coronavirus disease 2019 (COVID-19) patients at different saturation levels. Heme and HO-1 enzyme levels significantly increased in the low SpO2 group, but further studies are required.


Subject(s)
COVID-19/metabolism , Heme Oxygenase-1/blood , Heme/metabolism , Adult , Bilirubin/blood , COVID-19/blood , COVID-19/enzymology , Female , Ferritins/blood , Humans , Male , Middle Aged , Oximetry , Prognosis , SARS-CoV-2/isolation & purification
14.
Journal of Microbiology, Immunology and Infection ; 2020.
Article | WHO COVID | ID: covidwho-276220

ABSTRACT

Herein, we report that nosocomial infection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) may be mitigated by using surgical masks and closed looped ventilation for both non-critical and critical patients. These preventive measures resulted in no viral contamination of surfaces in negative pressure environments.

SELECTION OF CITATIONS
SEARCH DETAIL